
Analyzing Data with R 

AN INTRODUCTION TO  
R STUDIO FOR ANALYZING DATA 

© A. Herbay (2018) - v 0.2.3 Page !1



Analyzing Data with R 

Episode 1: What is this all about? 

Episode 2: Programming 101 

Episode 3: R Studio Open House 

Episode 4: Data In, Data Out 

Episode 5: Plot twists 

Episode 6: Significantly yours! 

¯\_(ツ)_/¯ 
© A. Herbay (2018) - v 0.2.3 Page !2



Analyzing Data with R 

Episode 1 - What is this all about? 

In this tutorial, we will look at how to analyze data for research purposes using R Studio. There 
will be code, analogies, bad jokes, and (too) many cat pictures. If you are ok with that, welcome 
aboard ! Fasten your seat belt because we are going for a ride. :) 

Why should we use R?  

Several reasons motivated the use of R in this course. 

Applying concepts on real data 

➡ Applying the theoretical research and statistical concepts to real data should help you: 1. 
to have a better understanding of them, 2. to learn when to use them and how they are 
relevant. The idea is trying to make research and statistics more concrete to you. Imagine 
you want to learn how to paint. Talking about painting techniques for many lectures is 
relevant for sure, but nothing like taking a brush and some paint and trying to do it 
yourself! 

➡ Having a more practical view on how things are done in real research also shows some 
problems that are sometimes not mentioned in statistics textbooks, but play a major role in 
actual research such as missing data, outlier values…  

Advantages of programming and R 

➡ Why are we annoying you with R when there are softwares like SPSS? Well, it is a good 
thing to have a quick introduction to programming as it is widely used in many fields. We 
are living in a period where data are central and having a rough idea of how to analyze 
them will be advantageous  for you.  

➡ R and R Studio are free and open source. Everyone can download it and contribute to it. 
On the contrary, SPSS is expensive and has to be bought if you are not a McGill student 
anymore. While SPSS is still currently used in research, more and more people move 
towards R or Python (another programming language) to run their analyses. 

➡ Statistical softwares like SPSS are easier at first sight, but they are much less flexible. 
Indeed, R has several packages (add-ons) adapted to diverse analyses or research 
methodologies. Moreover, R is more than just statistics, you can do many things that SPSS 
or Excel would only dream of doing regarding data collection, types of graphs or new 
statistical analyses etc.  

➡ In the long run R is more efficient. When you run the same analyses repeatedly, in SPSS or 
Excel you would have to click many times in different menus for each one of your analyses. 
A script makes it more straightforward. Moreover, you can share scripts with other 
researchers which improves research transparency and replicability while you cannot really 
share where you have clicked and all the parameters you have entered in SPSS in a direct 
and easy way. 

© A. Herbay (2018) - v 0.2.3 Page !3



Analyzing Data with R 

It’s easier than it looks and it will be made at your reach 

➡ We are aware that the R Studio interface and looking at code can be a bit frightening at 
the beginning, especially if you have no past programming experience. We also know 
that you are not future programmers, or full-time researchers, so the goal will not be to 
show you every little detail about R. We just want you to learn the basics of real data 
analyses and we will prepare scripts for you that you will just have to use and adapt in a 
very direct way. We will mask the complexity of technical details. It is more scary than 
difficult. 

What are we gonna do during our R journey? 

1. Grasp the very basic concepts of programming 

2. Discover the R Studio Interface 

3. Learn how to set things up when you start R Studio 

4. Import data into R from a file on your computer 

5. Save data created in R to a file on your computer  

6. Compute basic values such as the mean of a variable contained in a dataset 

7. Create subsets of data 

8. Create various types of plots to look at your data 

9. Run various statistical tests 

 

 

© A. Herbay (2018) - v 0.2.3 Page !4

R as you see it

 Real R

➔

➔



Analyzing Data with R 

Episode 2 - Programming 101 

“Programming is so awful, it’s really hard to understand,  
it’s really not for me and I should just give up…”  

We know that your brain might be telling you that. But your brain is not always right! 
Remember the first time you rode a bike! 

Let’s go for a little overview of the very basic concepts of programming. 🚲 

Commands, Scripts & Comments 

When you do anything on a computer, there is a command behind it:  

A command is just some code to execute a simple action. 

Commands can be typed directly in a console  or it can be written in scripts.  1

A script is exactly like a recipe or a play: it’s a bunch of successive actions written together and 
that can be used multiple times. In R, it will be a succession of commands and comments to 
read files, make plots, run statistical tests… Writing scripts has the advantage of keeping track 
of the commands you used and reuse them later. 

In a script, comments are like special considerations or tips in a recipe, or like stage directions 
in a play. When actors play, they do not say them. Well, for comments it’s the same : our 
favourite actor R will just ignore our comments starting by a hash #. In a more programming 
style, we would say that R will not execute anything that comes after an hash #. But for us, the 
authors, comments are very important. They help to organize our code but also to understand 
quickly what each command does, which is especially useful when you work with colleagues or 
when you look at your code several weeks later, as sometimes commands can be long and hard 
to read. 

>> On the first line the comment covers the whole line, while on the third line it follows a command. 

 A console is just like a messaging app, where you would talk directly with the computer: you ask something and it 1

answers. We will see later where the R console is.

© A. Herbay (2018) - v 0.2.3 Page !5

# Adding the numbers 4 and 5 

4+5 

4+5 # Adding the numbers 4 and 5



Analyzing Data with R 

Variable 

A variable is used to store some simple or complex data in a human readable label : it has a 
name and it has a value (a bit like a box containing some object with a specific label on it). We 
use variables to store different types of objects: single values (e.g. 2 or ‘Montreal’), collections 
of values (e.g. lists), or datasets that we can then use multiple times by just calling their name. 

Let’s say you want to call your Mom to share your enthusiasm about R. 🦄  You pick up your 
phone, go to your contact list, and just click on Mom to start the call. Here Mom is a 
variable with the label ‘Mom’ and the value ‘514-123-4567’. You could then see your 
contact list as a list of variables. If your Mom gets a new number, then you would assign a 
new value to the variable Mom (a.k.a. as updating her number). 

Some conventions on a variable’s name : 

‣ Usually, the name of a variable does not begin with a capital letter. 

‣ It’s important to give a precise name to your variables . You know exactly what they mean 2

now but imagine in 6 months, 2 years…, imagine your colleagues. They have to be precise 
but not too long either. The challenge is to find the right balance between calling your data  
myData or dataFromProjectOnBilingualInfantsOct2018…  

‣ It needs to be read easily. If it’s made of multiple words, you should separate different words 
with an underline _  (NOT a dash - !!!), or a dot or start each word with a capital letter, such 
as in: multiple_words_variable, or multiple.words.variable, or multipleWordsVariable. 

How to assign a value to a variable in R 

In R,  the arrow <—  is used to store a value in a variable (it is the R version of ‘=‘) 

>> Assigning a value to a variable 

Let’s imagine we have the variable celsius_temperature. We will assign it the value 200. The 
following R command does just that.  

  

   >>> It’s like storing the value 200 in our box labeled ‘celsius_temperature’. 

We can store a single value, but we can store much more as a dataframe (as table of data) 
or the result of a function. Let’s look at a few more things. 

celsius_temperature <- 200

 You can find the reference to many ‘Software Horror Stories’ at this link https://www.cs.tau.ac.il/~nachumd/2

horror.html. A bunch of them involve variables that have been poorly named…

© A. Herbay (2018) - v 0.2.3 Page !6

https://www.cs.tau.ac.il/~nachumd/horror.html
https://www.cs.tau.ac.il/~nachumd/horror.html


Analyzing Data with R 

1 >> Updating a variable with a new single value 

> The new value (220) is assigned to the variable celsius_temperature and replaces the previous value (200) 

2 >> Adding two numbers and storing the result 

      
> Summing 200 and 20 with the sign ‘+’ and assigning the result to the variable celsius_temperature 

3 >> Updating a variable’s value using its previous value 

  
> 20 is added to the previous value of celsius_temperature (200) and stored as the new value of celsius_temperature 

4 >> Storing the result of a function in a variable 

  
> Here it’s similar to example 2 but using the function sum and assigning the result to celsius_temperature 

You might wonder what functions are. All I can say is that it’s the topic of our next section :)  

Function & argument ~ food processor & ingredients 

To execute our simple actions, we will use functions. Functions are like a kitchen appliance. It 
has a name (that you have not chosen) and you can use it by feeding it with something - in 
programming we call that an argument. Using a function with some arguments usually 
produces some output. Let’s consider some examples. 

➡ Let’s say you open the file ‘MySecretStatisticalDream.txt’ on your computer (because we all 
know you have such a file on your computer). When you double-click on the icon, behind 
the magical stage of your graphical interface, your computer runs the function open with 
the argument ‘MySecretStatisticalDream.txt’. Your output is a new window displaying 
your f i le . Wr i t ten wi th a programming s ty le , i t g ives someth ing l i ke : 
open(‘MySecretStatisticalDream.txt’)  3

➡ When you deleted the file ‘EmbarrassingPicture.jpg’, your computer called the function 
delete and applied it to your file’s name : delete(‘EmbarrassingPicture.jpg’) 

celsius_temperature <- 200 + 20

celsius_temperature <- celsius_temperature + 20

celsius_temperature <- sum(200,20)

 In reality it’s obviously more complex than that, but who cares about reality these days…3

© A. Herbay (2018) - v 0.2.3 Page !7

celsius_temperature <- 220



Analyzing Data with R 

➡ When you push the power button of your computer, it calls the command start() 

>>> how to use functions in R 

The basic notation for a function is: 

functionName(argument1, argument2, argument3)  

‣ Note that there is no space between functionName and the parenthesis, it’s important! 

‣ Various arguments are separated by commas 

‣ If the function produces an output it can be stored in a variable, as below, otherwise the 
output will be displayed in the console  4

output <- function(argument1, argument2, argument3) 

 Again, we will see in the next episode where the console is!4

© A. Herbay (2018) - v 0.2.3 Page !8

Some analogies to grasp concepts of variable, function and argument 

‣ how to assign the value ‘pizza’ (between quotes) to the variable 
meal_to_be_cooked (no quotes) 

meal_to_be_cooked <- ‘pizza’ 

‣ the function oven has 2 arguments and 1 output.  

‣ We can use our variable meal_to_be_cooked (if we have executed the line 
above) and put it as an argument in the function. Note that there is no quotes 
for a variable’s name.  

warm_meal <- oven(celsius_temperature, meal_to_be_cooked) 

‣ We can a l so d i rec t ly g ive our funct ion oven the raw va lue 
‘frozen_pizza’ (between quotes). Here the result would be exactly the same 
than before. In both cases, the value of the variable warm_meal could be 
something like ‘warm_pizza’. 

warm_meal <- oven(celsius_temperature, ‘frozen_pizza’) 

‣ the function mixer has 4 arguments and 1 output 

smoothie <- mixer(‘strawberry’,‘banana’,‘almond_milk’,‘orange_juice') 

‣ the function feel_confident_to_cook has 3 arguments and no output 

is_able_to_cook(has_skills, has_energy, has_time)



Analyzing Data with R 

>>>  some real R functions 

We have already seen the function sum earlier (on page 7). Here it has 2 arguments and the 
result (220) is stored in the variable celsius_temperature.  

We will introduce several functions later on. Let’s just see now the function print  which takes 
one argument and will display it in the console. It is useful to display some messages when 
using very long scripts. 

  

A little summary 

Scripts are lists of commands and comments. A command is an action, this action being most 
of the time represented by a function applied to some arguments. These arguments can be raw 
values or variables. If a function produces an output, it can be stored in a variable or displayed 
in the console. 

It’s a lot of concepts and vocabulary that you do not need to master immediately. You will 
certainly end up coming back several times to this chapter. 

 
Before starting our next section, take a (long) moment to relax 

© A. Herbay (2018) - v 0.2.3 Page !9

celsius_temperature <- sum(200,20)

print(“Hello you! You look so pretty today :)”)



Analyzing Data with R 

In the next episode … 

A little overview of what it would look like if we typed in the R console some commands we 
have mentioned in this episode.  

© A. Herbay (2018) - v 0.2.3 Page !10



Analyzing Data with R 

Episode 3 - R Studio Open House 

"Ok, I think I get the basic concepts of programming. But how do I use them? What are the 
different panels in R Studio? Where to click? What do I have to set up before I start using R?” 

In this chapter, we will first install R and R Studio.Then we will have a quick tour of R Studio so 
that you can feel at home. Just follow the guide :) 

Install R and R Studio  🚀  
R is like the motor of our statistical spaceship while R studio would be the cockpit with many 
little buttons and monitors to properly pilot our statistical analyses.  

1. Install R: go to https://cran.r-project.org/ 
• Click on Download R for Linux / MacOS X / Windows depending on your operating 

system  
• For MacOSX : Download the file ‘R-3.5.1.pkg’ in the section latest release 
• For Windows: Click on ‘install R for the first time’ and then ‘Download R 

3.5.1 for Windows’ 
• For Linux : select your Linux distribution and follow the associated 

instructions 

© A. Herbay (2018) - v 0.2.3 Page !11

https://cran.r-project.org/
https://cran.r-project.org/bin/macosx/R-3.5.1.pkg
https://cran.r-project.org/bin/windows/base/R-3.5.1-win.exe
https://cran.r-project.org/bin/windows/base/R-3.5.1-win.exe


Analyzing Data with R 

2. Install R Studio: go to https://www.rstudio.com/products/rstudio/download/ 
• Click on Download in the leftmost column FREE version of RStudio Desktop 
• Then download the installer adapted to your operating system 

A little tour of R Studio 



Let’s look at our new cockpit. We have 4 main panels. 

Let’s have a closer look at each window !  

© A. Herbay (2018) - v 0.2.3 Page !12

R CODE EDITOR

CONSOLE

ENVIRONMENT 
& COMMAND HISTORY

PLOTS & HELP

https://www.rstudio.com/products/rstudio/download/


Analyzing Data with R 

>>> Console 

If we were cooking, it would be the countertop, where the action happens! The console is the R 
window where commands are executed. It is like a dialogue window: if you type a command 
and press Enter, R executes your command, and can return an output in the console.   

If we type the commands directly in the console it will look like that: 

- Note that presence of the > on line 1, 2 and 4. It is called a prompt. It indicates a new line 
waiting for a command. I will usually never show it in the code examples.  

- On the first line, we typed a command to assign the value 200 to the variable 
celsius_temperature. We can also say that we declare the variable celsius_temperature 
with the value 200. 

- R executes our command (it creates a variable celsius_temperature and assigns the value 
200) but does not tell us anything in return. R can work quietly. 

- On line 2, we just typed the name of our variable celsius_temperature, it’s a way to ask R 
“Hey R, what is the value of celsius_temperature pleaaaase ?”.  

- And R kindly answers on line 3: it gives us one variable ( [1] ) with the value 200. It is its own 
way of saying “Hey you, the value of celsius_temperature is 200. Cheers”  

- Thank you R! 
- On the last line, R give us again a prompt to enter a new command 

Errors & Warnings 
If something goes wrong, R will indicate it to us using a red colour. There are two types of 
problems : warnings means that R was able to execute your command, but it noticed that 
some things might be wrong, so it just gives you a heads-up. On the contrary, errors are when 
R was not able to execute your command. As Amy Winehouse would say, let’s go back to black 
(font). For example, below, I made a mistake and typed celsius_temperatur instead of 
celsius_temperature. R reports an error: it cannot tell me what is the value of the variable 
celsius_temperatur because it did not find any object named celsius_temperatur.  

© A. Herbay (2018) - v 0.2.3 Page !13



Analyzing Data with R 

>>> Environment  

Each time we declare a variable or a dataframe, it 
is stored in the “environment’. The environment is 
a bit like an active memory. Unless you save it, it 
will be lost when you close R Studio.  
The environment window enables us to have a list 
of all the relevant elements that are currently 
active in the R memory. 
It is divided in two sections: Data for the dataframes (tables), and Values for the variables with 
other formats (single values, vectors, lists…). In the screenshot above, there is one dataframe 
(airbnb) and one value (celsius_temperature). 

>>> History  

We can browse all the commands we have entered in the console since we have started our 
current R session by clicking on the History tab. 

>>> Editor 

You can think of the editor as a notepad document. It is where you can write scripts and save 
them. You can have different tabs for each of your current open scripts (here we have a script 
named myCurrentScript.R and a second script named anotherScript.R). Line numbers are 
indicated on the left of the panel. The bottom-left corner of the panel indicates the position of 
the cursor (here line 4 column 9). R Studio will by default colour the comments in green. 

© A. Herbay (2018) - v 0.2.3 Page !14



Analyzing Data with R 

Running a script, or a section of a script, from the editor 

There are several ways to execute commands in R: 

1. you type it directly in the console window and then press Enter (as we have seen earlier) 

2. you can select some commands that are written in a script, press ‘cmd+Enter’ (‘ctrl+Enter 
for Windows)  and it will be executed in the console. Instead of pressing ‘cmd+Enter’, you 
can also press the button ‘Run’ on the top-right of the Editor panel. 

The example on the left screenshot would execute only command1 while the one on the 
right screenshot would execute command1, command2 and command3. The first line would 
be recognized as a comment by R and therefore it would not be executed. 
 

3. you can execute all the commands that are in a script ( = running the whole script) by 
clicking on the button                        on the top right of the editor. In our previous example, 
it would execute all commands (from command1 to command5) 

Saving a script 

A script is like a Word document, if you want your changes to be saved, don’t forget to save it! 
An unsaved script will appear in red followed by an asterisk. A saved script will be in black.    

> Saved script     > Unsaved script  

© A. Herbay (2018) - v 0.2.3 Page !15



Analyzing Data with R 

>>> Plots 
In the bottom-right panel of the R Studio window (see page 12), in the Plots tab, you will be 
able to look at the plots you have created. R Studio will only display the last created plot, but 
you can access previous plots that are still in memory using the little arrows. 

>>> Help 

 In the same window, in the tab Help, you also have access to a manual for each function. If you 
want to learn more about a function just type ? followed by the name of the function. 

Starting the R spaceship  

“Ok, nice tour, thank you. But now what should I do to start to do anything useful?” 

Well, thanks for asking. There are actually a few things to set up before leaving.  

>>> Set up your working directory  

Ok, but what is a working directory ??  
It’s like our home folder. R can read a file anywhere on your computer if you give its exact 
location (~the file address, that we call a path in computer science). However, if R only receives 
a file’s name, it will only look for this file in the current working directory. Same thing when 
writing a file: by default it will be created in the working directory. Defining a working directory 
makes it easier to read and write files in an organized manner.  

There are 2 methods to define the working directory: 

>> By clicking in R Studio menus 
- Click on the menu Session then Set Working Directory then Choose Directory  
- then select the folder that will become your working directory 

>> With a command 

© A. Herbay (2018) - v 0.2.3 Page !16

>> function setwd 
(setwd = set working directory) 

setwd(working_directory_path) 

Mandatory Input : 

‣ the variable working_directory_path. Its value is the path to your working directory 

Output : 
‣ there is no output for this function

?sum or help(“sum”) 



Analyzing Data with R 

‣ for Mac OS users : 

‣ for Windows users : 

!  
>>> change YOUR WINDOWS USER NAME above with your actual windows user name 

> The working directory should be checked (and potentially set up) each time you start R. 

 
The lazy cat tip  

You can first set up your working directory using the menus and you will get the command in 
your console once it’s done! You just have to copy this command for your future scripts. 

>>> Get the current working directory 

> Just type the function getwd() in the console, and R will indicate what is your current working directory, 

Note that the working directory is also indicated at the top of the console window. 

setwd(“C:/Users/YOUR WINDOWS USER NAME/Desktop/SCSD618")

© A. Herbay (2018) - v 0.2.3 Page !17

setwd("~/Desktop/SCSD618")

getwd()

ANNND ACTION !

For this class, create a folder on your desktop named ‘SCSD618’  

Set up this folder as our working directory



Analyzing Data with R 

Let’s go to the (code) library! 

When we cook, we are not inventing all the recipes ourselves, we use cook books. The same 
way when programming, we will use packages (~ cookbooks) that are a collection of useful 
functions already prepared for us. 

We need to :   1. install a package on our computer (you just have to do it once!)  
2. load it in our current environment (each time you restart R)  

>>> Install a package  

When you order a cookbook on the bookstore's website, they deliver it to you in a nice package.  

When you use the function install.packages, R goes online on the R website (named the 
CRAN) and looks for a package with the name you gave it. If R finds your package, it will be 
downloaded and installed on your computer. See packages as softwares, you just have to 
install it once, not every time you want to use it. 

‣ The syntax to install a package is : install.packages(‘package_name') 
Note that the package name has to be between quotes 

In this example we install ggplot2, the most popular R package/library to create graphs. 

!  

>>> Load a library 

Once a software is installed on your computer, you still have to double-click to launch it when 
you want to use it. Here, if we want to use a function from a library that is already installed, we 
still need to load this library in our environment.  

‣ The syntax to load a library in memory is  : library(library_name) 

Note that the name of the library IS NOT between quotes 

!  

!  

install.packages(‘ggplot2')

library(ggplot2)

ANNND ACTION !

Install the package ggplot2 on your computer 

Load the library ggplot2 in your environment

© A. Herbay (2018) - v 0.2.3 Page !18



Analyzing Data with R 

Shutting down the R spaceship 

When you quit R, you will often have the pop-up below. Usually, you should choose Save ! It 
will save your environment (all the variables that appeared in the top-right window of R Studio) 
in a file name .RData located in your working directory  (it’s a hidden file, so usually you won’t 
see it directly when browsing your folder). 
 

© A. Herbay (2018) - v 0.2.3 Page !19



Analyzing Data with R 

Episode 4 - Data In, Data Out 

“Data are to R what food is to cats: the cornerstone of their existence” 

Importing Data into R 

We will never enter all our data manually into R. We will rather use datasets that have been 
stored in an excel or a text file, and import them in our R environment. 

>>> Import data from CSV files  

A CSV  file is like an excel file without any fancy formatting or formula. It’s a table of raw values. 5

To import our CSV file, we will use the function read.csv  

 CSV stands for Comma Separated Value : it’s a table with raw values (formatting). Usually, the way to encode that 2 5

values are in different columns is to put a comma between them.

© A. Herbay (2018) - v 0.2.3 Page !20

>> function read.csv 

dataframe_in_R <- read.csv(file_to_read, sep = ',', header = TRUE) 

Input : (the star indicates that the argument is not mandatory) 

‣ the variable file_to_read containing the name of the CSV file to read. This name will 
be indicated between quotes and include the extension .csv. Moreover this file should 
be in your working directory.  

‣ *a value for the argument sep (that stands for separator) : how the file separates 
values that are in different columns : here it uses commas, but it can also be 
semicolon (‘;’) or a tabulation (‘\t’). 

‣ *a value for the argument header : if the first line of the CSV file contains column's 
name, you would put the value TRUE. Otherwise, if it is data, you would put FALSE. 

Output : 
• a dataframe in R named  dataframe_in_R including all data from file_to_read



Analyzing Data with R 

Let’s say we want to import the file ‘secretData.csv’, that is saved in my working directory, and 
to store the data it contains in a dataframe named secretData: 

Look at your Data in R 

Click on secretData in the section Data in the Environment window (top-right panel) 
Or you can also enter the following command  

If data are stored in a dataframe, each column is a variable, and each line is an observation. 

>> Getting a variable (column) in a dataframe  

dataframeName$variableName  6

>> Getting a observation (row) in a dataframe  

dataframeName[observationNumber,] 

>> Getting a specific variable (column) of a specific observation (row) in a dataframe  

dataframeName[observationNumber,’variableName’] 

variable1 variable2 … variableN

observation1 value11 value12 … value1N

observation2 value21 value22 …. value2N

… … …. … …

observationM valueM1 valueM2 … valueMN

 or less direct: dataframeName[ ,’variableName’]6

© A. Herbay (2018) - v 0.2.3 Page !21

secretData <- read.csv(‘secretData.csv’, sep = ',', header = TRUE)

ANNND ACTION !

Make sure that airbnb_mtl.csv is placed in the working directory 

Import in R the data contained in the file airbnb_mtl.csv 

Look at the table of data in the R Studio interface 

View(secretData)



Analyzing Data with R 

Subsetting Data 

Sometimes, we will want to operate on only a subset of our observations. Let’s say that our 
data contains observations of participants from many countries, and we want to study only 
participants from a given set of countries. 

>>> How to define conditions for subsetting 

We need to talk (#dramatic pause ) … about how to write the conditions (#substantial relief) 7

Usually you will want to select observations : 

1. that equals one specific value (e.g. only the French participants) 

2. that are different from one specific value (e.g. all participants who are not French) 

3. that have a value included in a list of possible values (e.g. French and Spanish participants)  

4. that are different than a list of possible values (e.g. all but French or Spanish participants) 

The R syntax for each type of condition is specified in the box below: 

 There is an hash because it’s a comment, R-style ;-)7

© A. Herbay (2018) - v 0.2.3 Page !22

>> function subset 

subsetDataFrame <- subset(originalDataFrame, condition_to_be_included_in_subset) 

Input : 

‣ the variable originalDataFrame containing the original data you want to subset 
‣ the condition_to_be_included_in_subset that observations need to match to be 

included in the new data frame  

Output : 
• a dataframe named  subsetDataFrame including only observations from  

originalDataFrame matching the given condition_to_create_subset

1. originalDataFrame$variableA == value Y 

2. originalDataFrame$variableA != valueY  

3. originalDataFrame$variableA %in% c(valueB,valueC,valueD) 

4. !(originalDataFrame$variableA %in% c(valueB,valueC,valueD))



Analyzing Data with R 

Here is a more concrete example, subsetting from our dataframe secretData previously 
defined:  

>>> More than one condition  

Sometimes, you might have more than one condition to select your observations. Let’s say :  
1. you want only the female participants from France, 
2. you want participants that have French either as their native language or their second 

language 

And here is an example of code in R:  

Situation R notation

Condition A AND Condition B A & B

Condition A OR Condition B A | B 

© A. Herbay (2018) - v 0.2.3 Page !23

# select only French participants 
frenchParticipants <- subset(secretData, secretData$nationality == ‘French’) 

# select all but French participants 
nonFrenchParticipants <- subset(secretData, secretData$nationality != ‘French’) 

# select French and Spanish participants 
frenchAndSpanishParticipants <- subset(secretData, secretData$nationality %in% 
c(‘French’,’Spanish’)) 

# select all but French and Spanish participants 
nonFrenchAndSpanishParticipants <- subset(secretData, !(secretData$nationality 
%in% c(‘French’,’Spanish’)))

# A AND B : select only female French participants 
femaleFrenchPpts <- subset(secretData, secretData$nationality == ‘French’ &  
secretData$gender == ‘Female’) 

# A OR B: select all participants with as first or second language 
frenchSpeakingPpts <- subset(secretData, secretData$nativeLanguage == ‘French’ |  
secretData$secondLanguage == ‘French’)



Analyzing Data with R 

Export data into a file 

The following command will export the data included in the dataframe frenchParticipants into 
the file participants_fr.csv in my working directory 

Importing data with the Graphic User Interface (GUI) 

If you really love to click buttons, it is possible to import data by clicking on menus                 
(yay menus!). Follow the menu ‘Import dataset’ at the top of the Environment window. All 
subsequent details will be for a future version of this tutorial. 

© A. Herbay (2018) - v 0.2.3 Page !24

>> function write.csv 

write.csv(nameOfYouDataframeInR, nameYouWantForYourFile) 

Mandatory Input : 

‣ the variable nameOfYouDataframeInR containing the data you want to export 
‣ the variable nameYouWantForYourFile containing the name of the CSV file to write. 

This name will be indicated between quotes and include the extension .csv, such as in 
‘myNewFancyData.csv’ 

Output : 
• there is no output here in R. The real output is the CSV file in your working directory

write.csv(frenchParticipants, ‘participants_fr.csv’)

ANNND ACTION !

Create a subset of the dataframe airbnb_mtl named affordableListings 

that include only listings with a price below $2000 

Create a subset of the dataframe affordableListings named 

touristyListings that include only listings in the neighbourhood ‘Ville-

Marie’ or in ‘Le Plateau-Mont-Royal’ 

Save the dataframe touristyListings in the file ‘touristyListings.csv’



Analyzing Data with R 

Episode 5 - Basic operations 

Compute basic values of a variable in a dataframe 

Let’s say we are interested in the variable age in the dataframe secretData. 

>>> Minimum value: function min 

  

>>>Maximum value: function max 

  

>>> Mean value: function mean 

  

>>> Median value: function median 

  

>>> Standard deviation: function sd 

  

>>> Function summary 

‣ The output of the function summary would look like that: 

min(secretData$age)

max(secretData$age)

mean(secretData$age)

median(secretData$age)

sd(secretData$age)

© A. Herbay (2018) - v 0.2.3 Page !25

summary(secretData$age)

   Min.  1st Qu.  Median   Mean  3rd Qu.   Max.  

  70.00   76.00   79.00   79.14   82.75   88.00


